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Abstract. The problem of a thin elastic ring contained within a smooth rigid cavity is considered for the case where
the ring is subjected to a radial point load. The problem is approached as a moving intermediate boundary
problem in the calculus of variations and a closed-form analytical solution is obtained. Numerical results are
presented for several cases, revealing unstable behavior of the ring configuration.

1. Introduction

In many applications a protective lining is inserted into the interior of a cavity or cylindrical
structure. As such linings are generally used for insulation or environmental purposes their
behavior under load is of interest.

To date, several authors have considered various aspects of the problem of an elastic ring
contained within a rigid cavity. These include the effects of circumferential load [1-4], inertial
loading [5, 6], a contracting cavity wall [7], and external pressure [8, 9].

In the present work, the problem of an elastic ring contained within a cavity is considered
for the case where the ring is subjected to a radially-directed point load. As the ring may be
considered to be divided into two parts, one which is deflected away from the cavity wall and
the other maintaining sliding contact, the problem is approached herein as a moving
intermediate boundary-value problem in the calculus of variations with the "boundary"
between the two "regions" of the ring being sought as part of the solution. The ring is
modeled using the "arch equations" of [7], and the theorem of stationary potential energy
is applied with the resulting transversality condition yielding the relation which defines the
intermediate boundary. Numerical simulations are performed for several cases with the
results presented as curves in the "load-deflection" and "load-boundary angle" spaces.
Characteristic behavior of the ring configuration is discerned from the above results.

2. Problem formulation and analytical solution

Consider the circular elastic ring of thickness h contained within the cavity of radius R shown
in Fig. 1. The cavity wall shall be considered smooth and rigid while the ring, shown deflected
by a radial point load of magnitude Q0, is divided into two regions. The first region, which
shall be referred to as the "lift zone" or "lift region" is defined on the domain , correspond-
ing to 0 < 0 < , where 0 is the angular coordinate measured clockwise from the line of
action of the applied load. The second region shall be referred to as the "contact zone" or
"contact region" and corresponds to the portion of the ring in contact with the cavity wall.
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Fig. 1. Deflected elastic ring within rigid cavity.

It is defined on the domain 92 corresponding to < 0 < 7r. We note that only half the ring
need be analyzed as a result of the symmetry of the problem.

The problem shall be approached as a moving intermediate boundary-value problem in
the calculus of variations, with the intermediate boundary, , sought as part of the solution.
The corresponding differential equations, associated boundary and interface conditions, and
the transversality condition resulting from the moving intermediate boundary are found by
incorporating a shallow-arch theory as the mathematical model and applying the theorem
of stationary potential energy. In what follows, all displacements are normalized with respect
to the radius of the cavity.

We shall begin by formulating an energy functional, rI, as follows:

2

n = E [vU + U()] - + A, (1)
i=l

where U(i) and U() correspond to the normalized bending and membrane energies, respect-
ively, on A, W corresponds to the work done by the normalized radial point load
Q = QoR2/D, D is the bending stiffness of the ring, and A is a "constraint functional"
restricting the deflections of the portion of the ring in the "contact zone".

The explicit forms of these functionals are given by

1 1
- d U = 2 d U = 2CJNdO, (2a, b)

U(2) = 2d0, U (2) = - N22d, (2c, d)UB 2 f K~2 C-
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* = Qw(0), (2e)

and

A = Aw2 dO, (2f)

where using the arch equations of El-Bayoumy [7], the normalized curvature change of the
portion of the ring on i, Ki is given by

K = w + Wi, (i= 1, 2) (3a)

and the normalized resultant membrane force on ij, N is given by

N = -C[u[ - w + wf 2], (i = 1, 2). (3b)

In the above expressions u (positive clockwise) and wi (positive inward) correspond to the
normalized circumferential and radial deformations, respectively, of a material particle on
the ring centerline. In addition, C = 12/h2 is the normalized membrane stiffness of the ring
where h = /iR 1 is the normalized thickness of the ring, is a Lagrange multiplier, and
( )'- d( )/dO.

The theorem of stationary potential energy shall next be applied, which in the context of
the present problem may be stated as

6n = (4)

where 6 corresponds to the variational operator. Substitution of (1), along with (2) and (3),
into (4) yields the governing differential equations

KC + Ki + (NjW[) + N = pi, 2), (5)

N ' = 0, (6)

and

W2 = 0, 0e 2, (7)

where

Pi = 0 and P2 = . (8a, b)

We also obtain the boundary and matching conditions

[K, + NW[]o=o = Q, (9a)

w[(O) = u,(O) = 0, (9b, c)

Wl() = W2(), w() = w2(, Ul() = U2(0), (10a, b, c)
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N() = N 2 (), (10d)

w2(n) = 0, w2(7) = u2(0r) = 0, (Ila, b, c)

and the transversality condition resulting from the vanishing of the coefficients of ok in (4)

2 (K ) + KW - KW2 - KW2W2 " + K2 W2 - w2

+ -(N 2 - N 2 ) + N(u; + w' 2) - N2 (u + w12) = 0. (12)

The quantity P2 may be identified as the contact pressure p, thus

P2 = P = , 0E92. (13)

Upon integrating (6) and imposing (10d) we find that

N = N2 = No = constant. (14)

If we now take (13) and (14) into account the governing differential equations simplify to

Y{Wi} = Pi2 - N, 0 i (i = 1, 2), (15a, b)

and

w2 = 0, (1 5c)

where

d4 d 2

= d 4 + (No + 2) - + 1, (16)

and ,U corresponds to Kronecker's delta. The associated boundary and matching conditions
similarly reduce to

wl"(O) = Q0, w(0) = 0, (17a, b)

Wi(M = W(() = 0, (18a, b)

with (7), (9c), (10c), and (11c) combined to eliminate u, and u2 and form the following
equivalent expression in terms of wl:

f (Wl - w 2)dO = xNo/C. (19)

Finally, the transversality condition (12) reduces to the simple form

w'(¢) = 0. (20)
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The condition (20), when combined with (18a), is seen to specify that the bending moment
vanishes at the "lift zone"-"contact zone" interface. The system (15) together with conditions
(17)-(20) constitute a moving intermediate boundary problem for the deflection w,(0), the
membrane force No, and the interface angle . The corresponding solution is given by

wl(0) = Go(a, , Q0) cos Ao - F(a, 4, Q0) cos 0/c

- Q° (sin - o2 sin /a) - No, 0 e 904 - 1

w2(0) = 0, and p(O) = No, e 92

(21)

(22a, b)

where

C2 = [No + 2 + /No(No + 4)] > 1 or No = (0 2 - 1)2/ 2 ,

Go(ca, 4, Qo) _= c . [(c, ' sin / - cos at + cos 0/0 +
(ac4 - 1) sin a' G,(a, 4) j

(23a, b)

No sin /ca
GI(a, ) '

(24a)

FO(a, 0, Qo)
- GI(e, )) [Qo s--1 F(c,)) + N. sin a+ ,

(24b)

(24c)F,(oc, 4) = 1 - a2 sin c) sin /a - cos ac cos +/oc,

and

G,(c, 4) = cos aco sin /ac - 2 sin oct cos +/a. (24d)

Upon substitution of (21), the conditions (19) and (20) may be written as explicit functions
of c, , and Q0. We thus have

Go (a, -, Qo) sin +/ F+, Q)o [coS csi - cos4 Cs 1aLI oe 4 -1

- Z O(, 4', Q0) = No(c + ir/C)

and

QoH(a, ) = NoH 2(, )

(25)

(26)
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where

[G2 sin , sin -02
Z4o(a, [#I - s1 [ 2 - +F _ (*2 - sin 32)4 ( 2 2 41

+Q 4qb [1 sin fL + sin sin i 2

+ Q OG a3 [sin 2% + COS ,2 + COS 1 2a 1
+ Q G 0 _4 I + 2- +2 2

a4- 1 a/> *2 1 (oc4 -¢ I)

+ 4) [sin2 / + cos 2 cos +, 27 1
+ L +°-/a 2 +1 ( 4 _ 1)J (27)

H(c, 4) = (cos ac4 - cos p/a), (28a)

H2(a, ) = 2cos Lcx sin /a - sin cao cos +/a, (28b)

B, = 2ac+, 02 = 2/a, (29a, b)

at2_ 1 2 + 1
¢1 = -- 0, ¢2 = -- , (29c, d)

and Go, F0, F1, and G, are given by (24a-d) respectively. Equations (25) and (26) constitute
a pair of coupled nonlinear algebraic equations in , , and Q0 which may be solved
simultaneously to yield the load-"interface" angle and load-deflection response for a given
structure.

3. Numerical results

As stated at the end of the previous section, equations (25) and (26) constitute a coupled pair
of nonlinear algebraic equations, the roots of which yield the locus of points which define
the "equilibrium paths" in the "load-interface angle space" for the corresponding structure.
The associated "crown point" deflections A0 _ w(O) can then be obtained using equation
(21), thus generating the image of the "equilibrium path" in the corresponding "load-deflec-
tion space". This is done by first substituting equation (26) into equation (25) which
eliminates Q0 and results in a single nonlinear algebraic equation in c and . The values of
a corresponding to desired values of 4 are then found using the bisection technique, with the
value of Q0 associated with each (a, ) pair then obtained from (26). Finally, the correspond-
ing value of A0 is evaluated using (21). Results are displayed in Figs. 2 and 3, for several
values of the normalized stiffness C.

The first feature that may be observed from these figures is the existence of a maximum
or "critical" load Qc at which point "snap-thru" takes place with the crown-point deflection
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Fig. 2. Applied load versus "lift zone"/"contact zone" interface angle: (1) C = 9 x 106, (2) C = 4 x 106,
(3) C = 2x 10o.

and associated interface angle increasing in an unstable manner to relatively large values
with no change in the magnitude of the load. A second feature that may be observed is the
existence of a minimum value of , ?,,,n for each C, below which no state of equilibrium is
observed. This feature, as well as the unstable "snap-thru" behavior was observed for a
constrained ring subjected to distributed unidirectional loading [5] and for a parallel problem
of a ring with initial clearance from the cavity wall [6]. Unlike for these cases, however, the
minimum corresponding to the present problem is reached before Q0 reaches Qc as the load
is increased.

The implications of the presence of m,,,n, and of the general shapes of the curves presented,
offer the following interpretation. Consider the "equilibrium paths" corresponding to the
ring where C = 2 x 106 as an example. As we proceed up the Q0 - path we note that the
interface angle initially decreases slightly with increasing Q0 until - 0.193 corresponding
to a "closing" or shrinking of the "lift zone" [0, ?]. This would seem to imply that at low
values of the applied load, and corresponding crown-point deflection, the ring initially
"shrinks" with very little flexure. As the load is subsequently increased, the crown-point
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C

Fig. 3. Applied load versus "crown point" deflection: (1) C = 9 x 106, (2) C = 4 x 106, (3) C = 2 x 106.

deflection increases monotonically with the increased flexure of the ring causing the "contact
zone" to grow, thus reducing the size of the "lift zone" (i.e., - 0 decreases) until the minimum
value of 4 is reached. At this point the ring begins to lift away from the wall of the cavity
with the crown-point deflection still increasing, the process occurring in a stable manner until
Q = Qc 26.5 ( t 0.0198, A0 & 0.0108). At this point "snap-thru" occurs with the ring
lifting away from the cavity wall in an unstable fashion.

Though not shown, we note that the normalized resultant membrane force, No, reaches
a maximum value of No 338. (A0 - 0.0175), No t 447. (A0 t 0.0131), and No ~ 618.
(A0 0.00955), for C = 2 x 106, 4 x 106, and 9 x 106 respectively.

Upon comparing the equilibrium paths corresponding to the different values of C con-
sidered, we may note that the larger the stiffness of the ring the smaller is the minimum
interface angle and, in general, the more "leftward" the entire curve. We may also note that
as C increases, the critical load increases and the "peak" of the corresponding curve becomes
sharper. We further note that the "lifting" of the ring during "snap-thru" appears to be
relatively more severe for rings of greater stiffness as a consequence of the larger amount of
strain energy released during the process.
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4. Concluding remarks

The problem of a thin elastic ring contained within a smooth rigid cavity and subjected to
a radial point load has been addressed as a moving intermediate boundary problem in the
calculus of variations. A closed-form analytical solution was obtained and the results of
numerical studies employing that solution presented for several cases. The results, presented
in the form of load-interface angle and load-deflection plots, revealed unstable "snap-thru"
behavior of the ring for critical values of the applied load, as well as the existence of a
minimum interface angle implying other qualitative features of the ring behavior under this
type of loading and constraint.
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